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The axisymmetric distribution of the excess temperature of a fill in the case of the presence of an ellipsoidally
shaped thermal source in it has been expanded in a double series. The influence of the site of location and
dimensions of the source and of heat-exchange conditions on the values of the steady-state excess temperature
has been studied by calculation.

To prevent emergencies (fires, explosions, etc.) caused by the self-heating of raw material in the process of its
storage one monitors temperature. It is important to know the temperature fields generated by sources of different shapes.
For this purpose we have investigated the distributions of the self-heating temperature in a rectangularly shaped mass
[1–3]. Below we consider a cylindrically shaped mass. Such masses occur in practice in the case of storage of hay under
a roof and of loose materials in cylindrical silos.

We characterize the dimensions of the mass by radius Rf and height l. The sought distribution function of the
excess temperature T = T(r, z) is considered to be dependent just on two variables, i.e., the radial coordinate r and the
axial coordinate z. We guide the latter vertically downward, having located its origin on the upper horizontal end of the
fill (see Fig. 1). We take an ellipsoid of revolution with semiaxes R1 and R3 as the boundary of the internal source of
self-heating (region D); this ellipsoid is described, in a cylindrical coordinate system, by the equation
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The density of the thermal sources in region D is considered to be constant and equal to q0. Beyond the region
it is equal to zero. The coefficient λ is also considered to be a constant.

With the above simplifications the field of the excess self-heating temperature is described by the Poisson equa-
tion
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Restricting ourselves to consideration of fills which are stored outdoors (haystacks, strawricks, etc.), on the cy-
lindrical surface r = Rf we take

T (Rf, z) = 0 . (2)

On the fill ends z = 0 and z = 1, we study three variants of heat-exchange conditions:
(1) the conditions are the same as on the lateral surface, i.e.,

T (r, 0) = T (r, l) = 0 ; (3)

(2) the lower end of the mass is ideally heat-insulated; it corresponds to

T (r, 0) = Tz
′
 (r, l) = 0 ; (4)
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(3) heat insulation of both ends is such that 

Tz
′
 (r, 0) = Tz

′
 (r, l) = 0 . (5)

By expanding the solution of Eq. (1) in a Fourier–Bessel series in the radial coordinate and in a Fourier series
in the axial coordinate we find for boundary conditions (2) and (3)
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With boundary conditions (2) and (4) the symbol µk in series (6) should be replaced by the symbol
νk = (2k − 1)⋅π(2l)−1.

In the case of boundary conditions (2) and (5) the solution of the boundary-value problem is the expansion
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Let us analyze the results of calculations which have been obtained for the mass of raw material with Rf = 5 m
and l = 2Rf.

The data in Tables 1 and 2 (where the dimensionless values T
__
(r, l ⁄ 2) = 103λT(r, l ⁄ 2) (q0Rf

2)−1 and T
__
(0, z) =

103λT(0, z) (q0Rf
2)−1 are, respectively, indicated) enable one to draw a conclusion on the manner in which the tempera-

ture decreases with distance from the center of the source for RfR1
−1 = 5.

The accelerated decrease in the temperature over the variable z is attributed to the fact that the ellipsoidal source
is flattened in the vertical direction. It has R1 = 2R3.

The dimensionless values of the temperature T
__
(0, l ⁄ 2) obtained at the centers of the sources of different shapes

which have the same volume and hence the same heat-release power are written in Table 3. The quantities R1 and R3
were varied so that R1

2R3 = 1 m3 = const.
The calculations show that with the central position of the source (at a large distance from the boundaries of

the fill) the largest increase in the temperature in the family of ellipsoidal sources of equal strength is provided by the
internal thermal source of a spherical shape (R1 = R3 = 1 m). Such is not the case for sources located near the boundary
(edge) of the fill, which is confirmed by the results of calculations written in Table 4. The table gives the dimensionless
values of the temperatures T

__
(0, ζ) = 103λT(0, ζ) (q0Rf

2)−1 and T
__
(0, l) = 103λT(0, l) (q0Rf

2)−1 calculated for a source which

Fig. 1. Computational scheme.
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touches, with its lower point, the lower heat-insulated end of the fill (ζ = l − R3). In the calculation, we varied the rela-
tions of the ellipsoid semiaxes with the strength of the thermal source being constant (R1

2R3 = 1 m3 = const). We took the
conditions of ideal heat exchange, i.e., boundary conditions (2) and (4), on the upper end of the fill.

For sources compressed in the vertical direction (R3 < 1) the temperature at the point (0, l) is higher than that
at the point (0, ζ). For ellipsoids extended in the vertical direction (R3 > 1) we have the inverse inequality. The maximum
increase in the temperature in the family of bottom sources belongs not to a spherical source. The data in Table 4 show
that it corresponds to a source which has R3 = 0.5 m and R1 C 1.4142 m.

Thus, depending on the location of a source of constant strength we have such relations of its dimensions which
give the maximum increase in the temperature of self-heating of raw material.

NOTATION

r and z, radial and axial coordinates; T(r, z), function of the temperature field; Rf and l, radius and height of the
cylindrical mass of raw material; λ, thermal conductivity of the raw material; R1 and R3, semiaxes of the ellipsoidal
source of self-heating; ζ, axial coordinate of the center of the source; J0(t) and J1(t), Bessel functions of the first kind
of zero and unity orders; Sm, mth positive zero of the function J0(S); δk0, Kronecker symbol.
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TABLE 4. Values of T
__
(0, ζ) and T

__
(0, l) for the Bottom Source

R3, m T
__
(0, ζ) T

__
(0, l) R3, m T

__
(0, ζ) T

__
(0, l)

0.1 14.18 14.36 0.8 23.18 24.08

0.2 19.92 20.52 1.0 22.10 22.06

0.4 23.83 25.24 1.2 21.02 19.96

0.5 24.16 25.71 1.4 20.00 17.98

0.6 24.03 25.53 1.6 19.04 16.19

0.7 23.66 24.93 1.8 18.16 14.61

TABLE 1. Values of T
__
(r, l ⁄ 2) for Different r

r, m 0.0 0.3 0.5 1.0 1.5 2.0

T
__
(r, l ⁄ 2) 10.864 10.438 9.681 6.134 3.379 2.163

TABLE 2. Values of T
__

 (0, z) for Different z

z, m 5.0 5.3 5.5 6.0 6.5 7.0

T
__
(0, z) 10.864 9.915 8.229 4.672 2.962 1.999

TABLE 3. Values of T
__
(0, l ⁄ 2) for Different Shapes of the Sources

R3, m T
__
(0, l ⁄ 2) R3, m T

__
(0, l ⁄ 2) R3, m T

__
(0, l ⁄ 2)

0.4 14.734 0.9 17.498 1.2 17.413

0.6 16.569 1.0 17.545 1.4 17.097

0.8 17.348 1.1 17.510 1.6 16.679
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